Neuromodulators Control the Polarity of Spike-Timing-Dependent Synaptic Plasticity
نویسندگان
چکیده
Near coincidental pre- and postsynaptic action potentials induce associative long-term potentiation (LTP) or long-term depression (LTD), depending on the order of their timing. Here, we show that in visual cortex the rules of this spike-timing-dependent plasticity are not rigid, but shaped by neuromodulator receptors coupled to adenylyl cyclase (AC) and phospholipase C (PLC) signaling cascades. Activation of the AC and PLC cascades results in phosphorylation of postsynaptic glutamate receptors at sites that serve as specific "tags" for LTP and LTD. As a consequence, the outcome (i.e., whether LTP or LTD) of a given pattern of pre- and postsynaptic firing depends not only on the order of the timing, but also on the relative activation of neuromodulator receptors coupled to AC and PLC. These findings indicate that cholinergic and adrenergic neuromodulation associated with the behavioral state of the animal can control the gating and the polarity of cortical plasticity.
منابع مشابه
Spike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملModulators of Spike Timing-Dependent Plasticity
6 Spike Timing-Dependent Plasticity (STDP) is a Hebbian form of learning 7 that captures the temporal relationship between preand postsynaptic 8 spikes. Recent studies have uncovered that the relative concentration of 9 neuromodulators, in addition to the timing of preand postsynaptic spikes, 10 can affect the polarity of STDP. In this paper we sought to modify existing 11 STDP rule implementin...
متن کاملNeuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules
Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulators on synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide "when" to create new memories in response to a flow ...
متن کاملAdrenergic gating of Hebbian spike-timing-dependent plasticity in cortical interneurons.
In pyramidal cells, the induction of spike-dependent plasticity (STDP) follows a simple Hebbian rule in which the order of presynaptic and postsynaptic firing dictates the induction of LTP or LTD. In contrast, cortical fast spiking (FS) interneurons, which control the rate and timing of pyramidal cell firing, reportedly express timing-dependent LTD, but not timing-dependent LTP. Because a misma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 56 شماره
صفحات -
تاریخ انتشار 2007